

WATER Innovation & Circularity CONFERENCE (WICC)

7th -9th JUNE

ATHENS

GREECE

GIFLUID project

Green Infrastructures to mitigate flood risks in Urban and sub-urban areas and to improve the quality of rainwater discharges - GIFLUID

The project aims to develop and promote practical tools which integrate the planning and design of **Green Urban Infrastructures** (GUIs) in critical urban areas of Malta and Sicily in order to mitigate floods effects, to increase the infiltration of rainwater also improving its quality.

Introduction

Frequently, traditional drainage networks, known as "*GRAY INFRASTRUCTURE*," demonstrate their inadequacy in managing stormwater, and it would be necessary to adapt them to new flow rates and volumes of runoff.

The main causes of the significant *increase in flow rates and volumes of runoff* in urban and suburban areas are due to:

- •The increase in rainfall intensity, primarily due to climate change phenomena.
- •The increase in **soil sealing** caused by urbanization and large infrastructures.

In the last 20 years, the extent of urbanized areas in Europe has increased by an average of 20% - (ISPRA, 2020).

"STREAMS as ROADS"

"ROADS as RIVERS"

Land use consumption in Italy (2006-2021)

Percentage of the total annual land use consumption at *National* level

Total annual land use consumption at *Regional* level

Total annual land use consumption (2021): 69.1 km²

19 hectares per day2 square meters per second

ISPRA (Italian Institute for Environmental Protection and Research)

Flood events in Sicily

NEED FOR A CHANGE OF CURRENT WATER MANAGEMENT MODELS TO CONTROL FLOODING AREAS

Palermo, 5-6 October 2013

Siracusa, 22 October 2021

Licata, 19 November 2016

Catania, 26 October 2021

The "Sponge City" concept

Compared to other urban stormwater management systems, the <u>"SPONGE CITY"</u> or <u>"PERMEABLE CITY"</u> covers a broader range of objectives, including reducing runoff and water stagnation, preventing floods, improving water quality, restoring natural ecosystems, and mitigating the impacts of heat islands.

Infiltration Basin

Construction detail design of an Infiltration basin

Lavinaio's stream location and hydrological characteristic

Morphological and Orographical Parameters

- Area (A) = 38.50 km^2
- Perimeter (P) = 47.3 km
- Main stream Length (L) = 22.78 km
- Max Height $(Q_M) = 2048.61 \text{ m.a.s.l.}$
- Min Height $(Q_m) = 195.37 \text{ m.a.s.l.}$
- Average Height $(H_m) = 854.97 \text{ m.a.s.l.}$
- Gradient (ΔQ) = 1852 m
- Main stream slope (i) = 8.13 %

Land use (CLC 2018)

Hydrometric Station of Aci Catena

- Historical recordings: 2016 - 2022
- Data recording time interval: 10 minutes

Hydrological modelling – Hec HMS

	60						$\overline{}$
C A	50	y = 0.7262 $R^2 =$	x + 4.839 0.63	07			
L I B	3 40			•			
R A	O ₂₀ (m ₃ /s) (m ₃ /s) O ₂₀			/	•	•	
T	ලී ₂₀	•		···			
O N	10		•				
	0	10	20	20	40	50	
	(0 10	20	30	40	50	60
			Q	$_{\rm est}$ (m ³ /	's)		

CALIBRATION				
NSE	PBIAS	RMSE	R ²	
0.54	1%	8.54	0.63	

Variation	NSE	PBIAS	RMSE	R ²
0 %	0.35	29.71%	10.16	0.57
25 %	0.48	15.68%	9.07	0.60
50 %	0.54	1.26%	8.54	0.63
75 %	0.51	-13.36%	8.85	0.65
100 %	0.38	-28.31%	9.93	0.67

$12 \times 5 = 60$ simulations

VALIDATION				
NSE	PBIAS	RMSE	R ²	
0.80	3%	5.61	0.80	

Hydraulic modelling – Hec RAS

Runoff Depth - T200 years

Peak Flow Discharge at outlet				
T10 years	T50 years	T200 years		
123.6 m ³ /s	295.4 m ³ /s	478.1 m ³ /s		

Nature Based Solution for Flood Risk Mitigation

Considering the high percentage of permeable areas (e.g., rural areas, areas with spontaneous vegetation) covering approximately <u>85%</u> of the <u>Lavinaio Stream basin</u>, it is necessary to implement large-scale nature-based solutions (NBS) in order to mitigate hydraulic risk, such as infiltration basins, rather than relying solely on local or urban small-scale NBS, such as green roofs, rain gardens, or porous pavements.

Nature Based Solution for Flood Risk Mitigation

Benefits:

- 1. Reduction of hydraulic risk in the surrounding urbanized area.
- 2. Control of flow rates in the watercourse aiming at improve consistency of downstream discharges both in terms of flow and event duration.
- 3. Enhancement of the area by increasing its usability for recreational purposes during dry periods, thus creating additional benefits for the locals.

Infiltration Basin effects – EPA SWMM

Infiltration basin effects				
	10 Years	50 Years	200 Years	
	Peak flow at the outlet (m³/s)	Peak flow at the outlet (m³/s)	Peak flow at the outlet (m³/s)	
Current Scenario	141.0	269.2	410.2	
With Nature Based Solution (NBS)	134.4	259.8	399.9	
Peak flow reduction (%)	4.7	3.5	2.5	

Conclusions

- Preliminary calibration and validation processes of HEC-HMS and HEC-RAS models showed satisfactory results.
- The proposed approach has high replication capacity and is able to perform consistently well on different datasets and in different environments.
- It can provide a tool to guide the climate change green adaptation strategies of the Mediterranean Countries by enabling both the better management of storm runoff and the transformation a potential hazard into a resource through the use of NBS.
- A Masterplan will be created using the methodology and modelling framework proposed. Its purpose is to guide decision-makers in determining the economically optimal level of applying NBS for flood risk mitigation.
- Investing in NBS can transform cities into more resilient, livable, and sustainable destinations for residents, employees, and visitors alike.

Thank you for your attention

Email contacts:

MARZIO MELIS marzio.melis@gov.mt

LIVIANA SCIUTO liviana.sciuto@phd.unict.it

Follow our project:

https://www.gifluid.eu/

https://www.facebook.com/GiFluid

Soil sealing and climate change effects

ISPRA (Italian Institute for Environmental Protection and Research)